

BSc (Honours) Degree
in Computer Science

Final Year Project

Computing and Mathematics Programme Area

By

Improving the Ease of Use on Smart
Watches, with Gesture Control

Max Edmund Hunt

Project unit: PJE40
Supervisor: Dr Jacek Kopecky

April 2015

2

Abstract

Wearable devices are ever more present in today‟s technology market. These devices integrate

with smart phones with the intent to make our data more accessible. However, the way we interact

with that data is still the same on wearable devices, tapping on a screen or pressing buttons. In

order for wearable technology to improve the ease of use of our smart devices, a technology must

be found that is natural and easy for a user to operate. This project suggests gesture control as

the solution. By building a library, Gebble.js, that implements gesture control for the Pebble smart

watch, it allows developers to become more involved with gesture control. Instead of creating just

another application, they could build a better user experience utilising a more natural way for

consumers to interact with their data.

3

Acknowledgements

I would like to thank Dr Jacek Kopecky for his constant support and patience throughout this

project.

A special mention goes to David Gauld and Mike Williams for their constructive criticism and my

father, Ian Hunt, for his continued support.

4

Contents

1 Introduction ... 7

1.1 Aims and Objectives, Constraints ... 8

1.1.1 Project Aim and Objectives .. 8

1.1.2 Project Deliverables ... 8

1.1.3 Project Constraints ... 9

2 Literature Review .. 10

2.1 Gesture Recognition and General Motivation ... 10

2.2 Ease of Use and Perceived Ease of Use .. 10

2.2.1 Technology Acceptance Model and Using It .. 11

2.2.2 A non-theoretical gesture control example ... 11

2.3 Privacy and Security ... 12

3 Methodology ... 13

3.1 The choice .. 13

3.1.1 The Agile Manifesto .. 13

3.1.2 Prototyping ... 14

3.2 Overall Justification of the choice of the methodology .. 15

3.3 Project Management - Plan .. 15

4 Requirements ... 16

4.1 Functional Requirements .. 16

4.1.1 Definition Used to Assign the Functional Requirements ... 16

4.1.2 Table of Functional Requirements .. 16

4.1.3 Justification and Analysis of Functional Requirements ... 17

4.2 Non-Functional Requirements .. 17

4.2.1 Definition Used Assign the Non-Functional Requirement‟s .. 17

4.2.2 Table of Non-Function Requirements ... 18

4.2.3 Justification and Analysis of Non-Functional Requirements 18

4.3 Conclusion of Requirements ... 20

5 The Library - Gebble.js ... 21

5.1 Design ... 21

5.1.1 The Theory behind the Algorithm ... 21

5.1.2 Data Flow Diagram ... 24

5.2 Implementation ... 25

5

5.2.1 Evolution from the Prototypes .. 26

5.2.2 Frame Overlapping ... 26

5.3 Requirements Evaluation and Testing .. 28

5.3.1 Functional Requirements Evaluation .. 28

5.3.2 Non-Functional Requirement‟s Evaluation ... 29

5.4 Conclusion and Reflection of Gebble.js .. 30

6 Case Study Design and Development .. 31

6.1 Initial Design and Development .. 31

6.1.1 Choosing the Platform .. 31

6.1.2 Choosing the Language ... 31

6.1.3 Realisation of Imperfections – The Noise Monitor .. 32

6.2 Prototype 1 – Wrist Twist .. 34

6.2.1 Design .. 34

6.2.2 Implementation ... 36

6.2.3 Requirements Evaluation and Testing .. 37

6.2.4 Reflection of prototype ... 38

6.3 Prototype 2 – Gesture Counter ... 39

6.3.1 Design .. 39

6.3.2 Implementation ... 40

6.3.3 Requirements Evaluation and Testing .. 41

7 Conclusion .. 46

7.1 Overall Aim and Objective Completion ... 46

7.2 Future development .. 47

7.2.1 Doing more for the developer ... 47

7.2.2 Student Conference ... 47

7.3 Project management ... 48

7.3.1 Revised Gantt Chart ... 49

7.4 Personal Reflection ... 49

8 References ... 50

Appendix A – PID ... 53

1. Basic details .. 54

2. Outline of the project environment and problem to be solved ... 54

3. Project aim and objectives .. 55

4. Project deliverables... 55

5. Project constraints .. 55

6

6. Project approach ... 56

7. Facilities and resources .. 57

8. Log of risks ... 57

9. Starting point for research ... 58

10. Breakdown of tasks... 58

11. Project plan ... 60

12. Legal, ethical, professional, social issues ... 61

Appendix B – Ethics Certificate .. 62

Appendix C – Test Plans ... 64

1. Non-Functional Requirement 14 Test Plan ... 64

2. Non-Functional Requirement 17 Test Plan ... 65

Appendix D – Documentation for Gebble.js ... 66

1. Setting up Gebble.js.. 66

2. Using the functions ... 66

3. Example Project .. 67

Appendix E – Other Applications ... 68

1. The First Application ... 68

2. The Next Step – A Real Time Monitor .. 69

7

1 Introduction

For years, the technology industry has been working towards a new easy-to-use device

that communicates with the connected world. Wearable technology is now testing the

water as an answer to this innovative direction. With the recent announcements of the

Pebble Time and Apple Watch and the currently available Pebble Watch and Moto 360,

the smart watch is becoming more popular (Figure 1).

However, are they actually improving the ease of use and minimising the un-natural

interaction between a user and their phone? This project is exploring the fact that this

assumption may not be the case. By swapping the tapping on said phone to tapping on a

smart watch, in the worst case scenario, another step is being created when checking your

messages and consuming the battery of a user‟s device(s). How do you then introduce a

more natural way to interact with a phone?

Using the Pebble smart watch as a platform for my project, this project is implementing a

Gesture Control library, as a proof of concept as well as opening the doorway to

developers and a new range of gesture based applications. This reduces the need for

endless tapping and button clicking as the ease of use is improved by predetermined

gestures. Working in JavaScript, enabled in the 2.0 update by the Pebble team, and

employing a method of gesture detection, I hope to prove that the ease of use in smart

watches, can be greatly improved with the use of gesture control.

The Pebble presents unique challenges, such as memory availability and processing

power, that this project overcame, but it also improves the chance of this project being

used in a wider context. At 700,000 sales, see figure 1, the library has implications across

a wide number of professions, from medical to recreational. For example, the applications

range from, a way to interact with your phone for the visually impaired to a dance move

detection application. Later in the chapter “Case Study Design and Development,” I

explain the choice of the Pebble platform in more depth.

Figure 1 - Kunze, E.
(2015). Report: Top 10

Smartwatch
Manufacturers By Sales
(Q4 2014).

8

1.1 Aims and Objectives, Constraints

This section will outline my aims for this project and the objectives I will have to achieve to

meet this aim. It also formally describes what the planned deliverables are but moreover,

what may hold back development and the meeting of the aims and objectives in terms of

technical and physical constraints.

1.1.1 Project Aim and Objectives

Considering the statement of the problem and my proposed solution of the problem, the

overall aim of the project is to improve the ease of use on smart watch platforms, using

JavaScript as the developing language. This will be achieved in the form of a gesture

control library, available to the developing community around the pebble smart watch.

In order to achieve this I will be completing these objectives:

 Investigate Gesture Control to find un-complicated gestures to apply initially in the
applications.

 Research and scrutinize different Gesture Recognition techniques that have
already been implemented and identify if any current development is adaptable or
transferable to JavaScript.

 Explore and apply Gesture Control to the Pebble using the 3D accelerometer.

 Consider the creation of a website to create a Distributed System across the
platform to store data and/or application features.

 Meet the Pebble‟s memory requirement by generating/developing Efficient Code.

 Make sure all data collected is in accordance with the Data Protection Act.

 Release the applications and or library to the developer community and Pebble App
Store

1.1.2 Project Deliverables

These are to formally stated deliverables I hope to create to achieve my overall aim:

 A Library for Gesture Control, written in JavaScript

 A number of native applications for the Pebble.

Additionally, depending on the outcome of initial research and planning, I will produce the

system artefact:

 A website interfacing with the applications; used to store data and for additional
computing power if needed

Finally, documentation will be produced. This documentation will outline how to use the

library and any applications that are created to achieve the aim of the project. It may come

in the form of website entries, commenting in the developed code or and a standalone

document.

9

Figure 2 - Statista. (2015). Wearable technology worldwide projected total market value from 2012 to 2018 (in
billion U.S. dollars)

1.1.3 Project Constraints

With every project there are constraints and this project is no exception. Undoubtedly, the

generic constraints of time; the project has only 8 months, and workload; I personally have

other units and coursework that I need to complete, that will affect the outcome. However,

other constraints are in play that remain unique and somewhat uncommon in the now very

much evolved, industry of technology; the most pronounced being memory availability, but

also industry evolution and the Pebble SDK platform.

The introduction already briefly mentioned the fact that the Pebble, being a small gadget in

nature, has very limited space for memory storage. As a consequence, it not only has a

much smaller available space for volatile memory but also non-volatile. The pebble can

only have 8 apps stored on it at a time, each with a maximum memory allowance. A

solution has already been thought of and is incorporated into my objectives and

deliverables. This solution is the storing of data on an external website, which can then

interact with the Pebble in the form of Ajax requests.

Additionally, with the industry of technology and its constant evolution, the wearable device

sector is growing very quickly, Figure 2. This could potentially mean that the platform I

have opted for could be a legacy device by the time of this projects completion and, in fact,

the Pebble has announced an upgrade to my chosen platform, this is the Pebble Time for

the near future.

10

2 Literature Review

The overall aim of this literature review to gain and evaluate current knowledge in the area

of wearable technology, within the field of gesture control. The review will look at literature

in different topics, namely gesture recognition, usability/ease of use, current applications

and the privacy and security implications that could have effect on this project.

2.1 Gesture Recognition and General Motivation

“Presently, wearable technology is receiving significant attention worldwide,” (Park, Hwang

& Moon, 2014, p. 33) and also provides new possibilities for interacting with various

applications. (Kela, Korpipää, Mäntyjärvi, Kallio, Savino, Jozzo & Marca, 2005, p. 285)

Gesture control can be considered a natural communication channel, which has not yet

been fully utilised in human–computer interaction. (Kela et al, 2005, p.285) However, the

choice of the algorithms to implement this depends on the environment in which the

system is required to operate. (Hackenberg, McCall & Broll, 2011, p.20)

Wang, Zhang and Dai (2007, p. 238), use image manipulation and particle clustering to

find gestures within images and present data that proves this method to be best. However,

Hackenberg et al (2011, pp. 20-26) state and prove their method of gesture recognition is

best using distance and colour filters. There is no one correct way to go about gesture

recognition. The pebble operates over the 3D accelerometer, therefore image processing

is not possible but there are techniques using mathematical transposition to calculate

vectors(Wu, Pan, Zhang, Qi & Li, 2009, p.25-38) .

The pebble is powered by an ARM Cortex-M3 processor, an even though it is the industry-

leading 32-bit processor (“Overview for ARM Cortex-M3 Core”, n.d.), is also designed to

be cost efficient. Calculating vectors through mathematical solutions maybe beyond it and

therefore a solution incorporating current techniques from Wu et al (2009, p.25-38) should

be implemented.

2.2 Ease of Use and Perceived Ease of Use

Improving the ease of use is the target of this project, or is it?. Yang, Lee, Park and Lee

(2014, p.166) and Davis (1989, p. 320), both accept a difference between the perceived

ease of use and the actual ease of use. Davis proposed a model in which to gauge this

difference, in technology, adequately named the “Technology Acceptance Model.”

However, since then, Legris, Ingham and Collerette (2003) have criticised this model. This

is covered in the next section. The relevance this model has to gesture control, is the fact

that although many more applications are being integrated with gesture control (Tran &

11

Oh, 2014, p. 298), is it actually making their product or service easier to use and is using

the Technology Acceptance Model the best way to access this.

2.2.1 Technology Acceptance Model and Using It

There are 2 main variables, which are the building blocks to the Technology Acceptance

Model.

Davis says that (1989, p. 320), “people tend to use or not use an application to the extent

they believe it will help them perform their job better.” This is the first variable, perceived

usefulness. The second is the perceived ease of use, defined by when “potential users

believe that a given application is useful, they may, at the same time believe that the

system(s) is too hard to use and that the performance benefits of usage are outweighed by

the effort of using the application.”

Davis later then revised this into the Technology Acceptance Model 2 (Legris et al, 2003).

“It (now) includes subjective norms, and was tested with longitudinal research designs.”

However, Legris (2003) found this model to be successful at predicting the perceived

usefulness and the perceived ease of use in 40 percent of a system and the results, over

multiple systems, were neither clear nor consistent. This data also reflected the findings of

Hu, Chau, Liu Sheng, and Tam (1999, p. 104) at an average of 44 percent.

Hu et al, (1999, p. 104) came to this result via a comparison of the perceived usefulness

and perceived ease of use using the study and then via a number of physicians in there

study.

Legris et al(2003) thought it was due to the multiple errors in research methods and

practices. These errors are that many of the studies involved students and were not in a

business environment, most were on the introduction of office systems not a range of

business applications and all were self-reported rather than completed by a third party.

The Technology Acceptance Model and the Technology Acceptance Model 2, in

deduction, is useful but a better method of the detection of perceived usefulness and

perceived ease of use should be completed. This is yet to be fully identified.

2.2.2 A non-theoretical gesture control example

However, Silva and Rodrigues (2014, p 287) state that they initiated “usability testing with

users to determine performance measures, the influence of gesture control on perceived

usefulness and ease of use of the system.”

It found that in their medical application of gesture control “participants are able to perform

the tasks of search, selection and manipulation of 2Dimages and 3D models, quickly and

accurately, demonstrating the usefulness of the system as a possible effective and

competitive alternative, [to previous approaches] for gesture based interactive control of

medical images.”

In conclusion, although the Technology Acceptance Model may fall short of what is

required of it, perceived ease of use and or usefulness can be proved, or not be proved,

within a system of technology through a real-life study rather than a theoretical one.

12

Furthermore, gesture control has been proved, with or without this model, to be an

effective evolution in the ease of use field.

2.3 Privacy and Security

Due to the release of Google Glass, the public is now highly aware of wearable technology

(Kirkham and Greenhalgh, 2015, p. 26), along with its privacy and security concerns. With

adoption “expected to surge when the price of Google‟s Glass device drops to as low as

£150 by 2018” O'Flaherty (2014, p23) and given the constant advances in technology, the

cyber-security and privacy sector needs continuous innovation, legislation and investment

to keep pace. (Tyer, 2015).

The Data Protection Act 1998, part 2 section 7, covers the personal data use of

consumers by business as well as the collection of this data and how a consumer has right

to obtain that data in its raw form. But due to the nature of wearable devices, this data is

processed and transferred to other devices before this can happen. “This lack of clarity is

something that manufacturers may wish to address by ensuring that they are capable of

providing access to unprocessed data (if requested),” McDonald (2015, para 6).

The European parliament‟s board that improves this legislation, the Science and

Technology Assessment Panel (STOA), are discussing this issue with legislators. “The aim

of STOA projects is to provide parliamentarians with an overview of important emerging

science and technology developments that are not yet in the focus of European

legislation,” (Böhle, Coenen, Decker, Rader, 2012, p71). Regulation for this type of privacy

has not been introduced yet but has been drafted for use in 2015, (McDonald, 2015, para

6) in the form of the recently released, by the European Commissions, draft of the General

Data Protection Regulation. (De Hert & Papakonstantinou, 2012, p.130)

However, from the point of view of the consumer, the DPA means “Consumers using

wearable technology are unlikely to be in breach as it includes an exemption for the

collection of personal information for domestic purposes.” O'Flaherty (2014, p24). This

implies, currently, personal uses of devices are legislated correctly. Nevertheless, “one

minute on the way into work, it can be personal and the next minute, it‟s not” O'Flaherty

(2014, p24).

All this means that the use of the library and or applications that use the library, should

have the capability to print out the data to the console, should a consumer wish to see the

data. Although the Pebble may have less publicity than Google Glass, future legislation

may change the way that this project process a user‟s information, as gestures are

personal data to a user.

13

3 Methodology

This section is focused on the methodology choice. It explains why my choice of approach

was heavily attentive to the prototyping method as well as why the merits of the other

choice did not sway me into using them.

3.1 The choice

The chosen methodology has implications across the whole project, from design to testing

and is therefore not a decision to be quickly taken. Yet, whilst searching for a methodology

that fitted this project type and my development style, I came to the realisation about the

choice I was making. This realisation was that these are theoretical methodologies and

that one would not be a perfect fit for a real-world project. However, I narrowed the choice

to two methods, but decided on prototyping as my main method.

3.1.1 The Agile Manifesto

Nonetheless, the first method I looked into was the predominant approach in Software

Engineering (Losada, Urretavizcaya & Fernández-Castro, 2013, p. 2268). This is the Agile

Manifesto. A diagram that explains this method is available in figure 3. However, Losada et

al (2013, p.2268) also found that this method did not lend itself to design and archetypical

issues, which I foresee as a critical part of the development of the library. For this reason

alone, the applicability of this method was already questionable, but what tipped the

equilibrium is one of the main advantages of this method, the ability to change

requirements during the development process.

Figure 3 - ("Methodologies", n.d.)

14

Whilst I do foresee some movement of the requirements, the aim of the project is clear and

the requirements of the solution shouldn‟t change because, for example, the task was

harder than expected. If a requirement is not met, an explanation of why it hasn‟t been met

should be reported rather than changing it and then a new requirement stated in the next

cycle. This could lead to misdirection from the projects initial aim.

3.1.2 Prototyping

Whilst never having developed in this manner before and with limited literature on the

subject, as stated by Öztürk (2013, p.797), the decision was made to use this method for

the software development lifecycle. Prototyping allows a gradual increase of complexity

over time, whilst not deterring you from your original requirements. It is also stated that

pattern recognition projects, such as this one, fit the prototyping technique well.

“Prototyping techniques play an important role in many pattern recognition and computer

vision tasks,” Cordella, Stefano & Fontanella (2007, p.157).

The specific method of prototyping in use will be the evolutionary type. Cordella, Stefano &

Fontanella (2007, p.159) explained this technique with an analogy to natural selection. The

fittest and most resourceful individuals survive and then pass on their genetic traits and

experiences to their offspring. In other words, each prototype has its best features taken

and built on into the next prototype and difficulties that became pronounced in the previous

stage of development should not happen again. The foremost reason for choosing this

prototyping practice was that it allows the comparison of requirement validations to the

original expectations and not to the current system functionality (Zhang, Lv, Xu & Mu,

2010, p. 1557).

Another quality that evolutionary prototyping is designed for is easy growth and frequent

improvements, (Du Bois & Gerritsen, 2013, p. 138). As well as suiting the project type, this

feature of evolutionary prototyping suits the strict timescale, 8 months. On the other hand,

this is also one of the drawbacks. Multiple prototypes must be completed in order to justify

the use of this method. Upon reaching the end of the timescale with the just one prototype,

the end artefact is lot less developed. Conversely, too many prototypes could also be

created. Moving on after a small improvement, prototypes are created but the gain of

features is reduced resulting in the same conclusion, lack of overall development. Yet, I do

not believe that this will happen with the complexity of the project and the natural process

of development.

The other main subset of prototyping (Öztürk, 2013, p. 798) is “throw-away” prototyping.

Also referred to as abstract prototyping, it operates as you would expect, throwing each

prototype away at each stage and starting again from the beginning, using what you have

learnt from the previous effort. However, within the literature that was found, it was stated

that although it allows for ease of following of functional requirements, it lends itself more

to user interface design improvements (Du Bois & Gerritsen, 2013, p. 137). The main aim

of this project is to produce a library, a piece of development work which does not have a

graphical user interface. Consequently, the main advantage of this technique would have

little effect on my development.

15

3.2 Overall Justification of the choice of the methodology

It was therefore deemed that “throw-away” programming could work, but the evolutionary

subset should be used, as it is a better fit. The drawback stated for evolutionary

prototyping is eclipsed by the lack of an overall advantage from the throw-away

prototyping, but overall, prototyping seems a lot more effective, in terms of a software

development life cycle, when this projects aims are considered. The agile method is not a

poor method of development, far from it; the advantages are just not applicable to this

artefact, and my own, development criteria.

3.3 Project Management - Plan
Using the evolutionary prototype method and taking influence from the gantt chart already

produced in the PID (Appendix A). The project development gantt chart can be seen below

(figure 4). Due to the methodology, the design, testing and implementation sections

overlap on each prototype. This allows the evolution of the prototypes. Chapter 7, the

conclusion, will report on the outcome of this project plan.

Development Plan Months

Tasks October November December January February March April

1st Application

Real Time App

Prototype 1

Design

Implementation

Testing

Prototype 2

Design

Implementation

Testing

Library

Design

Implementation

Testing

Polishing

Documentation

Figure 4 - This gantt chart graphically explains the planned project development process

16

4 Requirements

This section defines the functional and non-functional requirements for my main artefact,

the library, and the prototypes themselves.

Whilst it is necessary to always try your best in order to succeed at the highest level,

realistic requirements must be made in order for the project to have an achievable and

quantifiable outcome.

These requirements have been made with the aims and objectives (chapter 1.1) in mind

as well as the constraints of time frame, technology and feasibility. This information about

the constraints can be seen in chapter 1.3 - Project constraints.

Below is the MoSCoW scale. This is the scale, by which I have classed my requirements,

(Brennan, 2009).

Letter Meaning Description

M MUST Describes a requirement that must be satisfied in the final solution for the solution to be considered
a success.

S SHOULD Represents a high-priority item that should be included in the solution if it is possible. This is often a
critical requirement but one which can be satisfied in other ways if strictly necessary.

C COULD Describes a requirement which is considered desirable but not necessary. This will be included if
time and resources permit.

W WON'T Represents a requirement that stakeholders have agreed will not be implemented in a given
release, but may be considered for the future. (note: occasionally the word "Would" is substituted
for "Won't" to give a clearer understanding of this choice).

4.1 Functional Requirements

4.1.1 Definition Used to Assign the Functional Requirements

Many formal definitions for functional requirements exist and while there is a “broad

consensus about how to define the term „functional requirements‟”(Glinz, 2007, p. 21),

there is no stated, standardised, definitions. However, the taken meaning that this project

will be using is that of Robertson & Robertson (1994, p. 111) “functional components that

are easy for the user to recognise”. This means that the requirements state the working

parts of the project which are definable by the user; in this case, the developers, smart

watch users and me.

4.1.2 Table of Functional Requirements

With this in mind, below is figure 5, the table of functional requirements for this project.

Requirements MoSCoW Scale No.

A Library to be produced that improves gesture control on the
pebble smartwatch.

M 1

Library to have at least 3 default movements M 2

Library to support the gesture, twisting of the wrist M 3

Library to support the gesture, shake M 4

Library to support the gestures of directional movement M 5

17

Library to support a circular movement S 6

Library (or possibly and an application) to have the capability
to output real-time data without the developer having to track
the Accelerometer Data

S 7

Library to support a running motion C 8

The Library should be able to operate at a minimum 25
samples of X,Y,Z data at 10Hz.

C 9

Ability for library to learn new gestures W 10

Library/Application to produce snapshot data to aid
developers

M 11

Application to monitor noise levels M 12

Application to detect “Down” C 13

Figure 5 - Table of Functional Requirements

4.1.3 Justification and Analysis of Functional Requirements

Figure 5 states the functional requirements this project must, should, could and won’t

implement, in order to meet the aims and objectives (chapter 1.1).

The library must requirement‟s contains all the gestures that are necessary to complete

the first objective, that “easy to do” gestures are implemented. However, it may seem

questionable that requirement 2 stated that the library must have 3 default gestures, whilst

already requiring more three gestures to be supported. The key word here is default. If a

user of the library wanted to use other gestures, these gestures are input by the user. If

there is no input from a user, the default gestures are implemented.

The other 2 gestures that are suggested in the figure 4, 6 and 8, are in the could and

should brackets, because the library‟s main aim is to recognise gestures, not generate

them for people to use. However, the only won’t requirement states an “ability to learn

gestures.” This is because it is beyond the scope of this project in time feasibility, but is a

very likely future improvement. If this was implemented, both 6 and 8 would then be

covered.

Requirement 9 would seem strange to only have as a could, due to the accuracy needed

by the library in order to recognise gestures. The justification of this is that, without

development testing in the prototyping phase, the optimal measurement settings are

unknown. This seems sensible from the research already completed, but maybe

unnecessary, hence the could status.

All of these functional requirements can be easily tested, due to their true/false or boolean

nature. I believe they are accurate in describing the aim and objects (chapter 1.1) and are

within the constraints (chapter 1.3) of this project.

4.2 Non-Functional Requirements

4.2.1 Definition Used Assign the Non-Functional Requirement’s

Much like, and even more so than, the functional requirement‟s (chapter 4.1), many

definitions exist that describe the non-functional requirement‟s. However, unlike the

functional requirements, there is “no consensus about the concepts … because terms are

used without a definition or a clarifying example. ”(Glinz, 2007, p. 21).

18

On the other hand, if a general understanding of the concept does not exist, why do so

many projects and software lifecycles state them? An interesting question with no clear

answer. My understanding of the definition is well covered by Davis (1993, p. 307-340). It

is the required overall attributes of the system, including portability, reliability, efficiency,

human engineering, testability, understandability, and modifiability. The non-functional

requirements in this project have been made with my personal understanding of the above

reference as well as the overall interpretation of Glinz (2007, p. 22), that each attribute

stated in the definitions can have both a broad and narrow meaning.

My personal understanding of the overall concept is that all requirements, outside of the

functional aspects, can be non-functional attributes of the project.

4.2.2 Table of Non-Function Requirements

Below is figure 6; the table of this projects non-functional requirements.

Requirements MoSCoW Scale No.

All coding in JavaScript/HTML M 1

Comments in source code to Support Library M 2

Testing to take place on a default gesture, at a target of 80% accuracy M 3

Project version tracked via GitHub M 4

Any data collected is within the Data Protection Act M 5

Ethical Checklist is not violated during development M 6

Stay below 7/8‟s of allocated memory M 7

Applications should be able to recover from errors without crashing
the Pebble Application

M 8

Each original application should not exceed the Pebble Memory limits M 9

The use of all Axis in the testing of a default gesture S 10

Official Documentation to Support Library S 11

Create Icons for applications and Library S 12

Release application to pebble store S 13

Over a period of testing, False positives should occur no more than 2
in 10 measurements

S 14

Library should be Open Source upon completion of project S 15

Code written should adhere to common JavaScript practice S 16

From data gathered to gesture detection, no more than 2 seconds
should occur

S 17

The library should take up no more than half the allocated space of
memory per application

S 18

Applications should be able to recover from errors without crashing
the Phone application

S

19

The library should leave to door open for improvement with more
default gestures

C 20

Each application should be able to run indefinitely without crashing the
watch. (Measurements should not be cached for longer than needed)

C 21

A website that can handle application settings C 22

The library can be ported to other JavaScript platforms W 23

Figure 6 - Table of Non-Functional Requirements

4.2.3 Justification and Analysis of Non-Functional Requirements

Figure 6 states the Non-Functional requirements this project must, should, could and

won’t implement, in order to meet the aims and objectives (chapter 3.1).

Starting with the must ranking, all have been seen as critical to my aims being reached as

well as the general maintainability and usability of my project. Numbers 1, 2 and 4 reflect

the overall coding and standard practice of coding. The design justification of the choice of

JavaScript can be looked at in chapter 6.3.1- Choosing the Language. Requirement 2; the

commenting of code is a constant requirement of all development projects in order to

19

achieve good maintainability, but the choice to use version control is not necessarily an

implied convention.

GitHub, the version control software in use, is a personal choice due to my familiarity with

it. Its advantages are that it has the ability to create private and public branches for the

different versions of the library, for example a release and development version. It is also

suitable for this project as I am the only developer and the service caters well for single

developer and small projects. In opposition to these reasons, although GitHub does have

the ability for larger, multi-developer projects, I would not consider using the free version

due to for a larger project due to various limitations. I would switch to the paid version, if

this were to be continued into a larger project in the future.

3, 7, 8 and 9 are the must meet testing requirements for the library and each application

produced. The Pebble, my chosen platform (see more about this in chapter 6.1.2 -

Choosing the Platform), has memory limitations due to its small nature; 7, 8 and 9 test that

this is not exceeded at any point. Requirement 3 targets the algorithm and the gestures

themselves, giving a tangible goal percentage to meet. Although 80% is a good success

rate, I hope to be above this.

The Data protection act and Ethical Checklist (see Appendix B), requirement‟s 5 and 6,

can never not be met. This is law and, although implied, should always be mentioned if

nothing else to remind myself there are rules to be followed in development.

In the should ranking, 10, 14, 17, 18 and 19 are the testing statements here. These are

should, rather than must, as they don‟t necessarily affect the outcome if not met.

Requirement 10 asks for all 3 of the axis to be used when testing to ensure consistency.

Requirement 14 covers the non-default gestures which aren‟t compulsory to the

objectives. 19 is a should, as this may be out of my control to fix. An error with the Pebble

Phone Application may be the cause of such errors. 17‟s time frame is a usability aim; the

gestures are still detected, this only seeks to improve the usability of the applications that

may implement the library this project produces. Requirement 18 is also about the usability

of the library. If the library uses over half of the allocated memory for an application it

would dramatically reduce the availability of memory for a developers own application.

I plan to release the produced library and any apps I produce 11, 12, 13 and 15 cover this

option, should they be of the quality needed or suitable for realse. 16 relates to

requirement 15. I plan to release it in Open Source, following common JavaScript

practices would improve the maintainability and readability of the library. However,

JavaScript is a very versatile language and what this project is attempting to implement, to

my knowledge, has not been completed before in this language. Henceforth why unique

challenges may cause a failure of the 16th requirement and should try to be followed,

rather than must be followed.

Three could, non-functional, requirements have been stated. Requirement 21 is a testing

condition. This requirement hopes the achieve longevity in the running of applications to

ensure quality to the users. 20 and 22 are of could ranking because they may not be

20

needed during development but should be considered in the process of the artefacts

construction.

This library is being tested only on the pebble and only with this platform in mind. However

the final requirement, of won’t category, is that of porting to other JavaScript platforms.

This is seen as a future improvement. See more about this in the chapter 8 the conclusion.

4.3 Conclusion of Requirements

As stated throughout the chapter, although a lot of the requirements may not be of the

must category and critical to development, many will still be completed by the artefacts

produced.

Each application will be tried against its applicable requirements and the reports of these

comparisons will be available at the end of each implementation section, when talking

about the developed artefact.

All requirements are of a quantifiable nature, whether that is of boolean value or numerical

terms and this will also be reflected in the comparison reports.

21

5 The Library - Gebble.js

This chapter is a description of the design and implementation of the library which this

project has constructed in order to meet its aims and objectives. This section does not

state the development stages before the construction of the library and the prototypes that

lead to it. This is outlined in chapter 8.

This chapter will report on the meeting of the requirement‟s outlined in chapter 6 and a

small reflection of how it went from my point of view. An overall conclusion can be found in

chapter 9.

5.1 Design

The library had the largest design aspect of the artefact. With the library inherently only

going to be used by developers and applications, the interaction between the user and my

library would have to be designed with a data flow diagram rather than with various

diagrams of a proposed interface. But this had to tie in with the concept used to implement

the algorithm. Seeing that the algorithm would affect the interaction with the user, this was

designed first, then the data flow diagram afterwards. At this stage of the project, this

concluded my design. Nevertheless, the implementation chapter 5.3 contains

improvements on this design which were overlooked at this stage.

5.1.1 The Theory behind the Algorithm

The design of the algorithm used is based, partly, on a proposed method of gesture

detection in a paper titled “Gesture Recognition with a 3-D Accelerometer,”(Wu, Pan,

Zhang, Qi & Li, 2009, p.25-38), discussed in the literature review. Figure 7, is a diagram

representing the element of the article I took inspiration from.

The Pebble generates a set amount of samples in arrays, at a set interval, across a

second. This variable is specified in my requirements as 25 samples at 10Hz. This means

at a rate of 10Hz, arrays containing 25 samples of the accelerometer at a certain time are

being posted in an event. These variables were chosen as a result of testing in the first

applications. They can be located in Appendix E.

Frame 0

Segment 0 Segment 1 Segment 2 Segment 3 Segment N

Frame 1

Frame 2 Frame N -1

Figure 7 – This is a visual aid to the explained algorithm in this section. It is a graphical representation of the array
form that is used to compare the samples supplied by the Pebble’s accelerometer, to the tolerances supplied by the
application using the library. Based on the Diagram provided by Wu et al (2009, p.27)

22

This array will then be manipulated into the above format. Each single sample from the

event is a segment; 2 segments make up one frame; in this example 24 frames then make

up the array to be passed into the detection algorithm. The library now has the

accelerometer data in the format above.

The array is deployed in the format above as it makes a segment to segment comparison

easier to evaluate. If not in this format, the cost of going back and forth within the array to

compare the gesture would have been less efficient. This is important because the

evaluation of a posted accelerometer event must be completed before the next event is

posted to stop queuing and delayed recognition, which affects usability of an application.

The next stage is segment comparison. By taking one axis value away from the

corresponding axis in the conjoined segment, in an absolute form, you end up with a

positive difference. This difference, in G-force, is what the library uses at its comparison

stage.

Gestures are a set of differences across a number of frames. They have an upper and

lower tolerance, an improvement made in prototype 2, chapter 6.3, that a frame must fall in

to be identified in the detection algorithm. The longer the gesture (in number of frames) the

more accurate the detection, since more comparisons will have to be made in order to

evaluate each frame as true and therefore the gesture as a whole. Priorities are then

assigned to each gesture that is compared in the same array. For example, if you wish to

remove violent shaking from the equation, this will be a priority of 1. The rest of the

gestures will then not activate when the Pebble is being miss used.

Moving on to the actual comparison of the frames to gestures, firstly, 2 checks will be

made; An initial check of the time field and a check to see if the vibrator was active during

that frame. If another gesture has been completed, the library allows for the user to return

to their natural position before another gesture is then detected, this is the check of the

time field of the first segment in each frame. This will be made available for developers to

configure themselves. A helpful variable is passed in the object of each segment, from the

pebble, “vib”. If this is true, the frame is discarded as well as that current gesture. The

vibrator, in the watch, affects the accelerometer values.

After both these checks are completed, all the lower bound and upper bound comparisons

are made to each x, y and z value. However, if one comparison is not true, that frame will

be instantly discarded, meaning no other evaluations take place. This improves the

efficiency of the algorithm and helps working within the constraints applied by the pebble,

processing and memory power. Subsequently, if all checks are passed for each frame, a

gesture is detected. A true value and the detection priority will be passed to the application

and the algorithm put on a timeout until the time field value has been reached.

On the next Page is a flow chart (figure 8) that represents the comparison algorithm as

explained above, but this flow chart only assumes that 1 gesture is being detected. If this

were not the case, the flow chart would become hard to interpret.

23

Start

If difference > Delay
Constant

Retrieve
Timeout

Delay
Constant

Current
Frame

Supplied

Calculate
difference in time

Retrieve
Last time of
detection
Constant

Get Current
Frame Time from

First Segment

Was the vibrator
active?

Get First Frames
Segments

Vibration Varible

Calculate frame
tolerances

False

Compare X Upper bound frame
tolerance with corresponding

Gesture Frame tolerance

Compare Y Lower bound frame
tolerance with corresponding

Current Gesture Frame tolerance

Compare X Lower bound frame
tolerance with corresponding

Current Gesture Frame tolerance

Compare Z Lower bound frame
tolerance with corresponding

Current Gesture Frame tolerance

Compare Y Upper bound frame
tolerance with corresponding

Current Gesture Frame tolerance

Compare Z Upper bound frame
tolerance with corresponding

Current Gesture Frame tolerance

False

True

True

True

True

False

False

False

True

True

Was that the last Gesture
frame

Go to next
Gesture Frame

False

Current Frame =
Current frame +1

True

False

False

Gesutre
Detection is False

Stop

Gesture
Detection is True

True

Retrieve
First

Gesture
Frame

True

Set Last
time of

detection
Constant

Figure 8 - This flow chart represents the comparison algorithm as explained above. We are assuming there is
only one gesture to be detected for simplicity in the diagram.

24

This concludes the explanation of the algorithm. Whilst this design was implemented, an

oversight was found during the implementation which had to be fixed. An explanation of

this is given in 6.3.2.

5.1.2 Data Flow Diagram

Here lies the Data Flow Diagrams. These diagrams are a graphical envisagement of how

Gebble.js is going to work.

5.1.2.1 Context Diagram

This diagram represents the top level communication between Gebble.js, the application

being run on the Pebble and its own accelerometer. This design is from the point of view of

Gebble.js, hence why the Pebble application and accelerometer are external entities. The

boolean value returned will be true if a gesture has been recognised and false if not. The

number of the recognised gesture will also be returned so the user knows what gesture

has been detected.

Pebble
Application

Pebble
Accelerometer

Accelerometer Event

Gebble.js

Initiation Function
Accelerometer Event

Boolean Value
Gesture Number

Figure 9 - This is the Context Diagram for the Gebble.js Library

5.1.2.2 Level 1 – Gebble.js

This diagram represents the envisaged inner workings of Gebble.js. The inputs and

outputs remain the same as the context diagram (figure 9), but can be sourced from

different places in the program. For example, “False” can be issued in the “Timeout

Checking Procedure” and “Iterate over frame Array matching to gesture” processes.

The three constants set by the “Init function” are variable to the user. “Debug” allows

console logs to be printed across the system. “Gestures” is and array containing the

gesture the application if to detect and “Timeout Delay” takes the time that should be taken

25

in-between detection of gestures. These all will have a default value, should init not be

used, these are Debug = true, Gestures = shake, X movement, Y movement and Z

movement and Timeout Delay = 3 seconds. “Time of last Positive Frame” is set to the first

of the last section of frames that were evaluated to be a gesture.

Pebble
Application

Pebble
Accelerometer

Accelerometer Event

GesturesTimeout Delay

DebugInit Function
Set Constants

Gestures
Timeout Delay

Debug

Gestures

Debug

Timeout Delay

Convert to
Correct

Format, Frame
Array

Accelerometer Event

Timeout
Checking

Procedure

Frame Array

Timeout Delay

Iterate over
frame Array
matching to

gesture

Frame Array

Boolean Value: False

Gestures

Debug

Vibration
Checking

Procedure

Current Frame

Boolean Value

Comparison to
Gesture
Frames

Current Frame
Gestures

Boolean Value
Boolean Value

Gesture Number

Time of last
Positive Frame Time of

 “True Frame”

Time

Figure 10 - This shows the processed to be involved in the Gebble.js library

This concludes my design section for the library. However, as mentioned in the

introduction, this design was by no means concrete and an oversight was found. This is

talked about in 5.3.2.

5.2 Implementation

The implementation stage of my library is an ongoing process, and continued development

will be carried out because of the potential it holds outside of the time frame of this project.

The headings below outline the stages of implementation that were completed during this

project, the conclusion, chapter 7, talks about future development.

26

5.2.1 Evolution from the Prototypes

Chapter 3 outlines the methodology used to complete the deliverables of this project. The

evolutionary process in use meant that I was able to use the 2nd prototype,(6.3) as a basis

for the library. In the 2nd prototype the algorithm and most of the functions needed had

been implemented but were integrated with the application. The first task was to then

extract all the necessary functions, which the library would need to operate independently.

These functions were extracted into a separate JavaScript file, which was to become

Gebble.js.

I now needed to implement the interaction between the library and the user. 5.1.2 shows a

single method would be the main interaction between the application and the library. This

would take the event supplied by the application and then run the Gebble.js with its data.

However, the option remained for the developer to use the base functions, should they

want to. Implementation was started with making the file a module and exporting the

functions to be used, but this proved very difficult due to an error with the debugging

platform, Cloud Pebble. I go into more detail about cloud pebble in 6.2.1 but this is an

online platform with a real time JavaScript debugger.

This debugger was showing the line “module.exports” to not be supported. Pebble

appeared to support this function in its documentation and the open source code on

Github. The next logical step was that my implementation was wrong but the code was

tested and worked fine on the other platforms.

Out of interest, the project was built to see what error would be output upon compilation,

but everything worked. The error was with cloud pebble‟s internal debugger. In fact, there

had never been a problem at all. However, all the effort of testing did not prove futile as

much was learnt about pebbles internal workings. A bug report was submitted, but I have

had no response from this report. After this submission, I moved onto the next evolution,

the implementation of initialisation variables.

These variables were, debug, delay and gestures. All had defaults already assigned

should they not be needed. Debug, being set to true, allowed output in the form of console

logs. These range from the output of the detected array to the priority of the gesture

detected, this satisfies the privacy investigation from the literature review. Delay and

Gesture are the same as explained in the design.

From this point, the library was completed to a good standard and was ready to be

released. However, initial testing showed a part of the system had been overlooked and

this needed to be fixed before progression into release could be made.

5.2.2 Frame Overlapping

It was noticed JavaScript produced an error which counted outside of the upper limit of the

array. This did not happen to each iteration of the loop. In fact, whilst trying to debug the

error, I observed that the error happened during detection of a gesture and not when the

Pebble was stationary. The error also appeared to be random, with no correlation between

27

20 21 22 23 24

21 22 23 24 00

22 23 24 00 01

23 24 00 01 02

24 00 01 02 03

19 18 ….

00 01 02 03 04 05 ….

05

Key

1 Frame =

Previous Array =

Joining Array =

Current Array =

05

05

05

Figure 11 - The diagram represents the method used to join the previous and current frame arrays together.

the number of loops completed and the number of errors produced. This led me to believe

it was a problem within the gesture array.

After testing this theory, a problem could not be found within this array. Turning my focus

to the loop itself, I discovered the nature of the problem, a large oversight in the design of

my algorithm.

If a frame, in the input array, was a match to the first frame of the gesture, it moves onto

the next frame for detection. Yet, if it was the last frame of the input array, whilst the outer

loop knew not to continue, the gesture loop would. This would then lead to an out of

bounds error within the frame array.

In order to fix it, a way to conjoin 2 arrays would have to be found; these being the

previous and current frame array. This provided a problem of its own, at what point in the

algorithm would a conjunction be made. The answer that first comes to mind is the end but

this would mean Gebble.js have to look for the next event whilst still in the current one. A

solution to this was not found that was efficient or maintainable, as it exploited a back

door.

Now looking at the start of the array, if it was possible to cache the previous array and then

join them at the start of the next frame array, it wouldn‟t need to wait for the next event

inside of the loop. Instead, process the whole thing as one each time. The exception is the

first iteration as there would be no previous array.

This solution worked but a condition was used to start the processing stage at the length of

the largest gesture, minus 1, from the end of the array. For example, if the length of the

longest gesture array was 4 and the length of a frame array was 24, it would start at

position 21. Calculating the start position seemed like a waste processing power,

something the Pebble does not have much of. This solution would also need a hardcoded

frame array length as a global variable, something which is bad practice. Therefore, my

final solution was developed.

The final solution would be to create an overlap between both arrays that was as long as

the longest gesture array. Each time stepping along by one frame created a new array.

The algorithm would then lower the upper limit to that arrays length minus the longest

gestures length. The detection would then stop at frame 20, if the length was 24, allowing

the last gesture to be detected if the longest gesture was of length 5. The next array would

then contain frames 21 – 24 of the cached array and frame 0 of the current array to close

the gap. Figure 11 explains this graphically. This completes my initial implementation for

the scope of this project.

28

5.3 Requirements Evaluation and Testing

Evaluating against the requirements requires different approaches for different

requirements. Some will require testing as a means of verification and validation while

others will only require and informed yes or no decision. However this does not mean that

those requirements, of a boolean nature, should be taken with any less amount of

investigation.

5.3.1 Functional Requirements Evaluation

Chapter 5.1.2 highlights the functional requirements of the project and numbers 1 through

10 represent the requirements, I felt at the start of this project, that this library should meet.

However, over the duration of this project, I have come to realise some are more important

than others to my main aim, improving the ease of use on the smart watch.

Requirement 1 can be evaluated by answering the question: Has Gebble.js, improved the

ability to use gesture control on the Pebble smart watch? Simply, yes. However, as the

creator of the library this is a biased opinion. From the point of view of a developer, before

Gebble.js, there did not exist a way in which gesture control could be implemented in

JavaScript, unless the developer went through the process of creating a module

themselves. Something not all developers may be able to do. Gebble.js now exists and

has therefore improved the availability of gesture control to at least the developers who

cannot make one themselves.

Requirement 2 states 3 default movements should be implemented. This has been met.

As stated in the implementation section, if an application does not set an array in the

gestures field, the default gestures are used. These are a shake, X, Y and Z directional

movement, one more than the quota.

Requirement‟s 3, 4, 5, 6 and 8 have become irrelevant, from a specific point of view, but

some have still been covered. These requirements require the library to support a specific

gesture or motion. From the point of view of the Gebble.js, this is not completed by itself

but by the definition of gestures that a developer wishes to recognise in their application

and then pass to Gebble.js. If these movements are included in Gebble.js, this is extra

code that may not be used by a developer and therefore decreasing the amount of space

available to the developer, for their own application. This is because the library, in its

current form, comes as one package. However, directional movement and shaking is

recognised since they are the default movements that demonstrate how the library works

in its crudest form, whilst still being useful. This problem could be solved by creating

different packages with customisation options, but this is beyond the scope of Gebble.js in

this timescale of this project. This is a future improvement covered in the conclusion,

chapter 7. From the point of view that all gestures are supported if you implement the right

tolerances, all these requirements are met. But, currently only requirements 4 and 5 are

met by default gestures.

Requirement 7 was met by an application in this project. Appendix E talks about this

application.

29

Requirement 9 states a minimum operation specification for the Gebble.js. This is the rate

at which Gebble.js currently operates, so the requirement has been met. However, during

prototyping it was determined that this was an optimal rate at which to test detection. This

has not been changed and although a developer defined gesture will work at a higher rate,

the default gesture will have a lower accuracy. This is because more segments are

produced by the event, with no increase in the frame number that the default gestures

hold.

5.3.2 Non-Functional Requirement’s Evaluation

Chapter 4.2.2 introduces the non-functional requirements of the project. Whilst most of

these requirements are fulfilled by the boolean type yes or no answers, some have

required a test plan. These test plans are available in Appendix C.

Requirement 1 states that all coding was to be completed using JavaScript and HTML, a

relatively easy requirement to evaluate. The library and applications have all been written

in JavaScript. As well as this, it has also been logged on GitHub and commented

throughout, meeting requirement 2 and 4. 5 and 6 require me to follow the ethical checklist

(Appendix B) and the Data Protection Act; to my knowledge, this particularly crucial

requirement has been completed. For Requirement 11, the documentation for this library is

in Appendix D as well as online at maxhunt.github.io. 15 requires the library to be open

source, I have moved it to a public branch on my GitHub.

Requirement 16 states I should adhere to common JavaScript practice. I have, in my

opinion, adhered to common coding practice, but this is dependent on the view and

developing style of each user.

Requirement 18 was complicated to verify. This declares the maximum size of the

complied library at 50% of available memory. On its own, as a single file, when built and

sent to the watch, it takes up 19%-20.5% of the memory. However, if combined with an

application, on average, it increased to size by about 0.5 - 1%; both results are below the

threshold of 50%. The initial cost of building an application, for the watch, appears to be

high, additions of files are then are relatively small. By making the reasonable assumption

that the library will only ever be used in conjunction with an application, this means the

overall memory cost is around 0.5 – 1%.

Requirement 20 relates to 15. By being open source, this requirement is met. The default

gestures are obvious, as well as commented in the code, and could be easily added to.

This is met. However, Requirement 23 is not. But as a wont requirement, this was

inevitable. This is talked about in the conclusion, chapter 7, as a future improvement.

We move onto the non-functional requirements that are verified via test plans. The first,

that applies to the library and needs a test plan is requirement 14. In order meet

requirement 10, this need to be tested over all axis. Therefore I will be using the default

gesture of a shake, as this implemented over all axis. The test plan, and description of it,

can be seen in Appendix C - 1. The result of this was 30 passes to 2 fails, passing this

requirement. However, the 2 fails were as a result of testing hard, random movements,

easily construed as a shake. If these results are taken out of the test, 100% accuracy is

reported. As this is also the default gesture, is completes requirement 3 as well.

30

Requirement 17 required more of improvisation with testing(test plan Appendix C – 2).

This tested the time it takes for the detection of a gesture, set at a maximum 2 seconds.

The solution was to use a colleague to start a stop watch at the end of gesture, and stop

when the detection is achieved. Again all axes must be tested to comply with requirement

10. This requirement was achieved at an average of 0.733 seconds in average response

time. All measurements taken were under the threshold and there were no miss detections

or false positives.

Therefore all requirements, that are applicable to the library, have been completed with the

exception of the wont criteria, but this is discussed in the conclusion as mentioned before.

5.4 Conclusion and Reflection of Gebble.js

The library has met all of my expectations, as well all of the requirements. I would

therefore say it was successful in the achieving the projects aim; it improves the ease of

use of smart watches, via gesture control.

Overall my view of this stage of development was that even though it was difficult at times

to find motivation to complete Gebble.js, the end product not only meets the requirements

but is in a maintainable and in usable state for someone to apply to their Pebble

application.

31

6 Case Study Design and Development

This chapter outlines the initial design and development and both prototypes before

Gebble.js.

6.1 Initial Design and Development

The overall aim of this part of the development process was make way for the prototypes

that led to Gebble.js. Many design decisions were made before and during the process of

this development stage. An explanation of these decisions and a discussion into the way

the prototypes were implemented will be given.

6.1.1 Choosing the Platform

Whilst there are many smart watches currently in

the private sector, I have chosen to develop on the

Pebble Platform. I believe it was the correct choice

for this project.

The drawback of this decision was that the Pebble

SDK, software development kit, can only be used on

a Linux or Mac system. Neither is reliably available

for the duration of this project. This was overcome

with the discovery of the Cloud Pebble service.

Cloud Pebble allows programming of the Pebble

online. It also syncs directly to GitHub, the version

control software in use. Simulation of the Pebble

watch offline is another valuable feature, as well as

an in house debugger JavaScript. With the

discovery of this service and all the additional

features, my initial constraint was overcome.

Once this issue was sorted, the Pebble was the

clear leader in all areas including price, battery life,

ease of development, ability to screenshot application (see figure 12) and the development

community surrounding it. It should also be mentioned that at the time of choice, the Apple

Watch, Moto 360 and Pebble Time had not been released.

6.1.2 Choosing the Language

As mentioned before, and defined in the requirements, JavaScript is the Language in

which the project is to be developed. However, the Pebble also has the capability to install

applications developed in C.

Figure 12 -Screen Shot of SnapShot Application

32

Although C is a very versatile language and I had already acquired skills using it, I

believed that the JavaScript option would not only enhance what I gained from this project

educational, but also meant that the code maybe transferable to other JavaScript platforms

in the future, another requirement.

The first applications to be developed are in Appendix E. They do not bring any insight into

the projects goal and are more personal development rather than good implementation.

6.1.3 Realisation of Imperfections – The Noise Monitor

After the development of the Real Time Application (Appendix E) and during the testing of

the requirements, a bug was reviled which was not expected and hadn‟t been considered

until this point, noise.

“Noise is a random and persistent disturbance that obscures or reduces the clarity of a

signal or measurement”. – (“Noise”, 2015).

Non-Functional Requirement 23 states that “Each application should be able to run

indefinitely without crashing the watch. (Measurements should not be cached for longer

than needed),” and in order to test this, the watch was

left with the application open and laid on a table, to

which there was fluctuation in the measurements, given

by the axis, when stationary.

If implemented gestures were accurate to the real

measurement, noise may then influence this and cause

a false detection or no detection at all. Therefore, this

noise application was built.

The design was to take the accelerometer data and

then implant it into an array. A global variable would

determine the number of samples it would take before

calculations were made. The outputted data would be

the Noise values.

This would be calculated by collating all the samples

and sorting the array, from lowest to highest. The last

and first sample are taken and subtracted from each

other, absolutely. This is the noise level for the

concerned axis. The technique is repeated for the other

axis. As well as the Noise level, the minimum,

maximum and average values are posted to the application as they were useful to

reference in testing and to verify the values were being calculated correctly.

One of the main challenges was a GUI problem. Multiple instances of the measurement

window meant that the counter would increase by the number of times you had used the

back button to exit that window and then started the measurement again. For example, if

the user had exited the window once, after receiving measurements and started it again,

the counter would then increase by 2. This created problems, with memory, but still did

Figure 13 - Screen Shot of Noise Monitoring
Application

33

provide accurate measurements. It also meant that if the application was closed, whilst the

samples were being taken, the application would continue behind the scenes.

The solution to this problem was to introduce a deadlock around the counter, the critical

section. Once one instance completed this section, it closes and the back button is press

is mimicked, the stacks are wiped and therefore nothing else enters the critical section

until the application is started again.

At this point the functionality of the application worked. Although an informal application, I

decided to meet the Non-Function Requirement, Number 13, a professional finish. To me it

was obvious how the application worked and I knew that it should be placed on a surface

upon starting the application; a user would have no knowledge of this without instruction

and a timer to give them the opportunity to get it to a stable surface. This was

implemented, but with a problem.

Due to JavaScript‟s a-synchronous nature, a problem arose. Initially the implemented

timeout function acted as a break point. But, this would be skipped and a handled later

when the application, voiding the timeout. After some debugging, the implementation of

the function had been misunderstood and it should encase the process to be held up

rather than act as a break point. Additional benefits also came of this; the application was

able post to the window every second. Thus creating a very user friendly countdown and

leading to a good finish on the application.

I stated in chapter 3, that I foresaw some movement in the requirements. This is that case.

Functional Requirement 12 was introduced as a result of this problem. An application

must be created to monitor and therefore calibrate the noise levels. Figure 14 shows the

results of the testing that took place, over 250 samples. With the exception of the 5th Z axis

test, the noise levels, on average are 19.4 Hz for the X, 22.4 Hz for the Y and 21.6 Hz for

the Z axis. The accelerometer is highly sensitive so a slight vibration of the test surface

may have caused the erroneous data. A buffer of 21 Hz should now be used in gestures.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

N

o

i

s

e

M

e

a

s

u

r

e

m

e

n

t

Test Number

Noise Monitor Results

X

Y

Z

Figure 14 - Graph of Noise Level Testing

34

After discussion of the Non-Functional requirement 13, I have also met Non-Functional

requirements: 1, 4, 5, 6, 7, 8, 9, 12, 13, 16, and 21. Functional requirements completed:

12. Non-functional requirement 7 asks to adhere to memory usage percentage of 7/8 or

87.5%. This apps usage was calculated to 20.5%, at required level. Number 12 requires

an icon to pass this can be seen in Figure 13, next to the applications name.

It may also be noted that this application wasn‟t in the project plan, due to its unforeseen

nature. At this point, there was already a slip in the monthly milestones. Chapter 4.3‟s

gantt chart shows that this it should have been late November. Due to the problem

encountered, this now had slipped to late December; prototype 1 therefore began

implementation in January.

6.2 Prototype 1 – Wrist Twist

Wrist Twist was the first try at gesture detection attempted in the artefact. After the initial

exploratory applications enough experience, with the Pebble.js API and JavaScript in

generally, had been gained to start the design of this application.

6.2.1 Design

Whilst the design of the gesture detection algorithm is reflected by in chapter 5, 5.2.1

specifically, that design is a much higher up the evolutionary chain. At this stage, the

discovery of a method of detection had only just been made.

With this is mind, figure 15 is a very rudimentary design of the algorithm to be

implemented as a flowchart.

35

Start
Process Array into

Frame Array
Accelerometer

Event Fired

Iterate Over
Frames

Is the Frame Vibration
setting true?

Go to next frame

Was that the last
frame?

True

False

Compare First Frame Z
tolerance to first gesture Z

tolerance

Compare Frist Frame +1 Z
tolerance to second gesture Z

tolerance

Compare First Frame X
tolerance to first gesture X

tolerance

Compare Frist Frame +1 X
tolerance to second gesture X

tolerance

True

False

True

True

False
False

Compare First Frame Y
tolerance to first gesture Y

tolerance

Compare Frist Frame +1 Y
tolerance to second gesture Y

tolerance

True

False

False

Stop

True

Output Detection

True

False

True

True

Output No
Detection

Figure 15 - Design of the algorithm used in the Twist Wrist Application

As this application was only ever going to have one gesture, there was no iteration across

the gesture, instead it was hardcoded. The gesture contained only 2 frames hence why

there are only 2 comparisons of each tolerance. These tolerances are upper bound only.

Furthermore, this design is also missing the timeout Delay check, this was a development

made in prototype 2.

36

However, it does prove an initial understanding of what had to be programmed in order to

successfully detect a gesture. It also contained the manipulation of the accelerometer

event, which converted the array into the form needed for comparison.

Unlike Gebble.js this is an application and has a graphical User interface. This interface‟s

simple design showed instructions of how to use the application and the application name

on the main screen. Upon the select button being pressed, the recognition would start and

a counter initialised that would show the amount of twists detected. Figure 16 is a plan of

this GUI.

This concluded the design phase of the application.

6.2.2 Implementation

With plenty of knowledge from previous efforts and

more energy put into the design stage, the

implementation of this prototype was fairly straight

forward.

The algorithm was implemented with ease. The

design broke it down into a single loop and various

if statements. However, it was the GUI

programming that proved difficult to step up. Each

piece of text in the GUI is an element that is

inserted to the screen with a vectored position. But

you cannot change the text of the object with one

command. The original piece of text has to be

removed, changed and then inserted again. If this

process is not followed and the text is only

changed, it writes over the top of itself. Once this

was realised, the implementation of this application

was completed.

In Conclusion, relative to everything else seen so

far, this was the quickest implementation. it was

due to the vast amount of discoveries made in the

initial applications (Appendix E) and the amount of design produced. Figure 17 shows the

13:34

Title

“Press Select

to start

gesture

recognition”

13:34

Counter

Twists : 6

Figure 16 - Graphical User Interface designs for Wrist Twist

Figure 17 - The Wrist Twist Application in the
menu on the Pebble

37

application finished, with its icon, in the pebble menu. Figure 19 and 20 show the end

design of both the screens, in the application.

Although the implementation may have gone as well could have been hoped, the testing

found various problems.

6.2.3 Requirements Evaluation and Testing

No requirements apply to this application as they all cover the finished library product and

the separate applications produced at the start rather than the development process. But

by applying the tests throughout development it also highlighted problems that would have

no otherwise have been found.

Allocated memory, non-functional requirement 7, was calculated to 19.1% well below the

stated tolerance.

Accuracy, requirement 3, tests had a very surprising result, highlighted in figure 20. This

was that the average detection was exactly 80%. This was not expected to pass at such

an early stage. More testing was needed.

Figure 18 - Counter Screen in the Wrist Twist

application
Figure 19 - The main screen of Wrist Twist

38

0 2 4 6 8 10 12 14

1

2

3

4

Average

Number of Non-Gesture Movements

Test Number
No Detection

Detection

Therefore I started testing requirement 14, and the answer became apparent. Figure 21

shows these results. The average here 36.5%, this contradicts to the overall result of

requirement 3. There is a problem with the implementation.

After debugging the algorithm, the implementation seemed correct. The problem was the

defined tolerances of the twisting action. They were too lenient. To solve this problem the

allowance put in for the noise factor (chapter 6.1.3) would have to be reduced, as well as a

lower limit introduced and a timeout function to allow the user to return to a natural

position. This is exactly what happened in prototype 2. The detection speed is visibly

random, sometimes over 5 seconds. In order to meet requirement 17, this will also have to

be improved on in the next prototype.

6.2.4 Reflection of prototype

Overall, I think this prototype was a success. A working prototype has been produced with

an algorithm, as well as a transformation function. There is room for improvement, but as

this is the first prototype, that outcome was to be expected.

0 5 10 15 20

1

2

3

4

Average

Number of Gestures

 Test Number
No-Detection

Dectection

Figure 21 - Graph of the results from testing non-functional requirement 14 with prototype 1

Figure 20 - Graph of the results from testing non-functional requirement 3 with prototype 1

39

6.3 Prototype 2 – Gesture Counter

This project is using the evolutionary model of prototyping; this prototype is not starting

from scratch, as the last one was. Gesture Counter is being built with prototype one as the

foundation. This does not mean that there is no design aspect involved in this section.

The primary objective of this application was to fix the problems highlighted at the end of

the previous chapter. These were:

 Add lower bound limits to the gesture detection

 Add a time delay factor

 Improve detection time of a gesture

The secondary objective was to alter the algorithm to allow for multiple gestures.

6.3.1 Design

Primary objectives 1 and 2 were a straight forward implementation evolution and need no

design.

In order to achieve the 3rd primary objective, reading on the Java script language was

needed and ways to improve efficiency were found.

The way loops were being implemented could be improved. Below is the generic loop from

prototype 1.

for (var i=0; i<array.length-1; i++){

 //dosomething

}

This is perfectly standard way to implement a loop, but an improvement can be made. By

defining array.length in the loop header, each time a loop in made, this is recalculated;

a very useful feature. However, if an array is not going to change in length over the loop,

this is not needed. This can therefore be defined outside of the loop, but even this is not

the best solution. If the loop is not needed, time has been spent defining a variable that

isn‟t used. Therefore the solution below is best.

for (var i=0, arrayLength = array.length-1 ; i<arrayLength; i++){

 //dosomething

}

By defining it in the loop header, all problems are avoided. This is something that I was

unaware of.

Another coding improvement is within the comparison method I was using. The subject is

nested “if” statements. These could all be brought onto one line, instead of consecutively

40

13:34

Title

“Press Select

to start

gesture

recognition”

13:34

Counter

Shake : 6

X : 0

Y : 4

Z : 2

Figure 22 - Graphical User Interface design for prototype 2

using logically operations; this included the new lower bound comparisons. The tolerances

should also be calculated in these statements meaning that tolerances are only calculated

if needed.

The next part of design is the technique for the addition of multiple gesture recognition.

The proposition is to introduce an array of gestures which is looped over. The position in

this array will determine the priority of the gesture. For example, the gesture at position 0

has priority 1; the lower the number, the better the priority.

Concluding the design, this

prototype, being an application

rather than the library, will have a

GUI aspect. The design has more

counters for the different gestures.

6.3.2 Implementation

Continuing the theme from the last

prototypes implementation, the thought put into the design made this stage a lot easier.

However, problems were identified in preliminary testing.

A different approach was taken for this prototype and the GUI was completed first. It

allowed the setup of counters and variables that would have to be supplied to. This was a

top down development approach. Until now, a bottom up approach had been taken.

Figures 23 and 24 show the implemented GUI.

Figure 24 - Main Screen of the Gesture
Counter

Figure 23 - Counter Screen of Gesture
Counter

41

The efficiency improvements were concentrated on the detection algorithm itself. As these

were general coding improvements, rather than a new implementation, it was simple.

Primary visual tests also concluded that speed up had been achieved; however, this was

without the new improvements from the other primary objectives and the secondary

objective.

Introducing the lower bound tolerances had little impact on the algorithm complexity as this

was just another set of comparisons.

With the time frame implementation, there were initial problems with selecting the correct

field in the array. This was down to a miscalculation rather than a problem with the coding.

The effect this had on the algorithm was minimal. Nevertheless, there was difficulty with

the calibration of these values.

In order to provide default gestures in the library, these gestures would have to be

extensively tested. At this stage, I began to realise I was going of task and time would be

better spent improving than prototype rather than introducing a whole host of gesture limits

and time delays to be available for use. While this would be useful and improve the ease

of use, the ultimate aim, implementing an efficient algorithm should be completed to a high

standard first. Without that, these highly tested gestures would mean nothing to an

application. Therefore, the time delay was left at 3 seconds and the default gestures that

were implemented were a shake, X, Y and Z directional movement. Simple and easy to

test gestures, that are still very useful to a developer.

Formerly, I had 4 gestures and an algorithm that could only detect one at a time. The

secondary objective now had to be implemented.

By installing a loop within the main loop, discussed in prototype 1, this became possible. It

also appeared to speed up the detection, even though more work was being undertaken.

At the time, this was not understood completely. I thought may have be down to gestures

being discarded a lot quicker because logical comparisons were being thrown away when

false. This did help speed up, but the actual reason was discovered in testing of the

requirements.

6.3.3 Requirements Evaluation and Testing

Due to the suspicions at the end of the previous section, the first piece of testing that was

undertaken was in order to complete non-functional requirement 17, the time it takes to

recognise a gesture. Initial tests, in the same format as the test plan available in Appendix

E, put this average time below 0.2 seconds. This seemed too good to be true. After

spending a time debugging, the problem was located. An incrementation on the gesture

array had been missed meaning that the first frame was checked over and over again,

rather than moving onto the next one. This also meant the time spent calibrating gestures

was wasted, as this had been done while this error was present. Nevertheless, with this

fixed and a recalibration of the gestures, the prototype was ready for testing. The visual

time it took for detection also seemed a lot more realistic.

Non-functional requirement 17 was tested; the amount of memory usage by the

application. This was a slight increase to 20.1% from 19.1% in prototype 1. It is under the

42

tolerance and therefore passes the requirement. The increase will be due to the increase

of characters in the JavaScript file.

Non-functional requirement 3 targets the detection rate of a gesture. This was completed

for all the calibrated gestures in this prototype. There is an extra field here as the gestures

can also be miss-detected as another gesture. Figure 25, 26,27 and 28 show the results.

0 5 10 15 20

1

2

3

4

Average

Number of Gestures Attempted

T

e

s

t

N

u

m

b

e

r

Shake - Prototype 2

Mis-Detection

No-Dectection

Dectection

Figure 25 - Non-functional requirement 3 test results for the shake gesture

0 5 10 15 20

1

2

3

4

Average

Number of Gestures Attempted

T

e

s

t

N

u

m

b

e

r

Z Movement - Prototype 2

Mis-Detection

No-Dectection

Dectection

Figure 26- Non-functional requirement 3 test results for the Z movement gesture

43

Each test involved 20 movements of the gesture described. The result of the movement

was then recorded. The shake gesture evaluated to 81.25%, Z to 71.25%, Y to 67.5% and

X to 87.5%. Although, only 2 of these pass the required 80% threshold, for the 2nd

prototype, they are sufficient. However, the reason that the Z and in particularly the Y

measurements failed was still explored.

I believe this is because the shake gesture was more suited to X directional shakes. This

meant that Z and Y movements were more often misconstrued as shakes than X

movements, leading to the result that was found. In order to stop this happening, different

shake gestures were introduced into Gebble.js, one for each of the axis.

Non-functional requirement 14‟s, false positives, result of testing was 18.75%. This is just

below the threshold of 2 in 10. Figure 29 displays these results. This is a good result for

prototype 2. This result also lines up with the other end of the spectrum, requirement 3.

The overall accuracy of the algorithm and gestures has therefore come close to meeting

0 5 10 15 20

1

2

3

4

Average

Number of Gestures Attempted

T

e

s

t

N

u

m

b

e

r

X Movement - Prototype 2

Mis-Detection

No-Dectection

Dectection

Figure 28 - Non-functional requirement 3 test results for the X movement gesture

0 5 10 15

1

2

3

4

Average

Number of Gestures Attempted

T

e

s

t

N

u

m

b

e

r

Y Movement - Prototype 2

Mis-Detection

No-Dectection

Dectection

Figure 27 - Non-functional requirement 3 test results for the Y movement gesture

44

the requirements. The Gebble.js improved upon this result to meet these requirements and

stated in chapter 5.

Requirement 17 states that the detection of a gesture must be under 2 seconds. This

requirement is the reason for the efficiency upgrades in this prototype. This averaged to

1.372 seconds, see figure 30.

This is below the threshold, but spikes can be identified above. However, the efficiency

has greatly improved from prototype one. Gebble.js improves this further after these initial

findings as report in chapter 5.

In conclusion, great progress was made from prototype 1 to 2, in both testing and

development.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

S

e

c

o

n

d

s

Test Number

Time Taken

Average

Figure 30 - Non-functional requirement 17 test results

0 5 10 15 20

1

2

3

4

Average

Number of Non-Gestures

T

e

s

t

N

u

m

b

e

r

No Detection

Detection

Figure 29 – Non-functional requirement 14 test results

45

At this point, I had regained time and was on target with the project management plan,

chapter 3.3 (figure 4) . It was predicted that only 2 prototypes would be needed until a final

version could be produced. This lead to a quick design and testing of the library, meaning I

was also on target with my development plan concerning Gebble.js.

46

7 Conclusion

With all the development and testing completed, the end of the project has been reached.

However, there are still topics that need concluding. This chapter speaks of my views on

this project, including a personal review and future development. Also included is a

comparison to the Aims and Objectives and an overlook from a project management point

of view.

7.1 Overall Aim and Objective Completion

The overall aim was to “improve the ease of use on smart watch platforms, using

JavaScript as the developing language.” This has certainly been completed through the

implementation of gesture control. Here is an example of this.

The user is walking down the street listening to music; it is raining. A song comes on that

the user does not want to listen to and wants to skip it. They now have to take their phone

out and change song. However, its touch screen and the rain now hitting the screen is

making it exceeding difficult to change song. The Gebble.js could fix this problem by

allowing the creation of an application that allows you to change the song using a simple

gesture such as a twist of their wrist.

Moving onto the objective, both the 1st and 2nd objectives were completed in the initial

reading Chapter 3, the literature review. The next objective, the application of gesture

control was completed by all the initial applications, prototypes and the finished library in

all 3 dimensions. Objective 4 a distributed system, in the end, was not needed. The

website maxhunt.github.io was created to allow for this if a need for this has arisen.

Objective 5 was to meet the Pebble‟s memory requirement by generating/developing

efficient code. As seen from the various testing and requirement evaluation sections this

was also met, but not without trouble along the way. If this had not been met, the overall

functionality of the project would have been flawed and may have made the Gebble.js

unusable.

Meeting number 6 was also crucial as if this was not met, I would be breaking the law. The

data protection act, was followed and no infringements took place. All problems highlighted

in the Privacy section of the literature review were considered throughout the project to

help this.

Finally, objective 7 highlighted the release of the project. Although nothing was released to

the Pebble Store, as the applications produced are not applicable to it, Gebble.js and all

the applications have been released from my GitHub. Future improvements, outside this

projects time scale, may be released and applications using this library certainly will.

47

7.2 Future development

The intention is to carry on development of Gebble.js as a personal project. Here are the

ideas and future development paths which have been thought about, or suggested during

a student conference that was attended.

7.2.1 Doing more for the developer

Whilst the current implementation of Gebble.js is very usable by the developer, could be

made improve their experience with Gebble.js. However, this would require research into

the user base. This is something that could only happen after developers have had

experience with the current release version. I would be asking for feedback on the current

way they interact with the Gebble.js. Would the developers want more done for them, at

the loss of some control over the accelerometer and at the expense of more memory used

by Gebble.js.

Currently an event from the accelerometer is passed to the library and acted upon. I am

fully aware that some developers would wish to subscribe to an event supplied by the

library rather than supply one to it. This would require a loss of control over the

accelerometer. The initialisation of the accelerometer and control of the accelerometer

would take place in the library. A start and stop function would then control whether the

application looking for a detection within the gesture, improving the ease of use of

Gebble.js to the more inexperienced developer.

The drawbacks are that a more experienced developer may want to use the accelerometer

for something else in their application. This would mean the accelerometer could be

initialised twice and this would not only be inefficient but may cause the 2 parts to interfere

with each other. This could be solved by producing different versions or packages of the

library for different needs, something which is being considered.

Another objective that has been mentioned before, that could also be performed using this

above method, is transferability. At this time the library will only work correctly on the

Pebble, but the algorithm has been made to work only in JavaScript. A future improvement

could be to split the library into 2 parts that make up Gebble.js.

The first part would be the interface with the pebble and possibly the method of

subscription above. The second part would be pure JavaScript used to implement gesture

control on Gebble.js, but can be used outside of the Pebble environment. Transferability

was something that was discussed in the student conference and is requirement 23.

7.2.2 Student Conference

This was attended, to demonstrate my project to people from the business and educational

environment. Transferability wasn‟t the only future aspect discussed here; other areas

such as medical and business were also debated.

48

The most interesting idea was from a medical perspective; an application to monitor

Parkinson‟s patients. Tremors of the body, commonly in the hand and arm, are one of the

symptoms of this disease; this would be monitored by an application using Gebble.js.

It would allow the patients to be monitored by the hospital and doctors without the need for

constant check-ups. Not only saving the patient hassle, but also the hospital money with a

small start-up cost, of the watch.

This was an unusual suggestion as the gestures would not be acted upon by the user, but

instead monitored from by someone on the outside and recorded. The data would only be

acted upon if a certain threshold was met. With the ability of multiple gestures being

monitored at the same time, this could also monitor the patient for falls and lack of

movement over a time period.

All this is made possible by the price of the watch, the ability for communication to an

outside service via ajax in JavaScript and of course, Gebble.js.

Many other business, presentation equipment, and gaming applications, augmented

reality, were suggested but above seemed the most interesting application.

7.3 Project management

This project has mostly been on track throughout, with the exception of the noise monitor

application. This caused a minor delay in the overall project plan meaning a lot more work

was completed in January. Therefore an updated gantt chart is supplied (figure 31).

The busy month of January is also reflected by the GitHub contribution calendar, located

at https://github.com/MaxHunt. This shows many contributions in the January and early

February months, in line with the development process.

49

7.3.1 Revised Gantt Chart

Plan Months

Tasks October November December January February March April

1st Application

Real Time App

Noise Monitor

Prototype 1

Design

Implementation

Testing

Prototype 2

Design

Implementation

Testing

Library 3

Design

Implementation

Testing

Polishing

Documentation
Figure 31 - Revised gantt chart of the project development stages

7.4 Personal Reflection

Thought-out the project I have commented briefly on my thoughts about various sections

and parts of the implementation process. This is a general personal conclusion of the

whole project.

This may be one of the largest and most significant projects undertaken so far in my

career. It was important to find a subject which would interest me to the end. If I did not

have interest in what I was doing, how could I expect someone reading about my project to

have interest in the subject I was talking about? I choose the right topic and have hopefully

conveyed my interest and enthusiasm throughout with the detailed descriptions of the

problems faced and analysis of them.

I am also very pleased with the result of this project. Not only have the deliverables met all

of the projects requirements, they have also met my own expectations. Gebble.js is very

usable and people have demonstrated interest in it in the near future. The student

conference also boosted my expectations of the library outside of the Pebble environment.

50

8 References

1. Brennan, K. (2009). A guide to the Business analysis body of knowledge (BABOK
guide). Toronto: International Institute of Business Analysis.

2. Davis, A. M. (1993). Software Requirements: Objects, Functions, & States. New
Jersey, United States of America: P T R Prentice-Hall, Inc.

3. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
http://www.jstor.org/stable/249008

4. De Hert, P., & Papakonstantinou, V. (2012). The proposed data protection
Regulation replacing Directive 95/46/EC: A sound system for the protection of
individuals. Computer Law & Security Review, 28(2) , 130-142.
http://dx.doi.org/10.1016/j.clsr.2012.01.011

5. Du Bois, E., & Gerritsen, B. D. M. (2013). Demonstration of software concepts to
multiple stakeholders using modular abstract prototyping. CoDesgin, 9(3), 137-159.
http://dx.doi.org/10.1080/15710882.2013.824485

6. Forecast market value global wearable technology market 2012-2018. (2015).
Retrieved from the Statista website:
http://www.statista.com/statistics/302484/wearable-technology-market-value

7. Glinz, M. (2007) On Non-Functional Requirements. 15th IEEE International
Requirements Engineering Conference.1, 21-26.
http://dx.doi.org/10.1109/RE.2007.45

8. Hackenberg, G., McCall, R., & Broll, W. (2011) Lightweight palm and finger tracking
for real-time 3D gesture control. Virtual Reality Conference, 2011 IEE, 19-26.
http://dx.doi.org/10.1109/VR.2011.5759431

9. Hu, P. J., Chau, P. Y. K., Lui Sheng, O. R., & Tam, K. Y. (1999). Examining the
Technology Acceptance Model Using Physician Acceptance of Telemedicine
Technology. Journal of Management Information Systems, 16(2), 91-112. Retrieved
from http://www.jstor.org/stable/40398433?origin=JSTOR-pdf

10. Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., & Marca, S.
(2006). Accelerometer-based gesture control for a design environment. Journal
Personal and Ubiquitous Computing, 10(5), 285-299.
http://dx.doi.org/10.1007/s00779-005-0033-8

11. Kirkham, R., & Greenhalgh, C. (2015) Social Access vs. Privacy in Wearable
Computing: A Case Study of Autism. Pervasive Computing, IEEE, 14(1), 26-33.
http://dx.doi.org/10.1109/MPRV.2015.14

12. Kunze, E. (2015). Report: Top 10 Smartwatch Manufacturers By Sales (Q4 2014).
Retrieved from https://wtvox.com/2015/03/report-top-10-smartwatch-manufacturers-
by-sales-q4-2014

http://www.sciencedirect.com/science/journal/02673649

51

13. Legris, P., Ignham, J., & Collerette, P. (2003). Why do people use information

technology? A critical review of the technology acceptance model. Information and
Management, 40(3), 191-204. http://dx.doi.org/10.1016/S0378-7206(01)00143-4

14. Losada, B., Urretavizcaya, M., & Fernández-Castro, I. (2013). A guide to agile
development of interactive software with a “User Objectives” -driven methodology.
Science of Computer Programming, 78 (11), 2268–228.
http://dx.doi.org/10.1016/j.scico.2012.07.022

15. McDonald, J. (2015). Wearable technology and privacy - the top three insights from
regulators and policymakers. Retrieved from

http://www.computing.co.uk/ctg/opinion/2395029/wearable-technology-and-privacy-
the-top-three-insights-from-regulators-and-policymakers

16. Methodologies. (n.d.). Retrieved from the Datamatics Group website:
http://datamaticsgroup.com/methodologies/

17. Noise. (2015). In The Free Dictionary. Retrieved from
http://www.thefreedictionary.com/noises

18. O‟Flaherty, K. (2014, October). Goggle Glass: a ticking time bomb?. SC Magazine:
For IT Security Professionals, 22-24. Retrieved from
http://www.scmagazineuk.com/google-glass-a-ticking-time-bomb/article/367264/

19. Overview for ARM Cortex-M3 processor. (n.d.) Retrieved from Texas instruments:
http://www.ti.com/lsds/ti/arm/arm_cortex_m_microcontrollers/arm_cortex_m3/overvi
ew.page

20. Öztürk, K. (2013). Selection of appropriate software development life cycle using
fuzzy logic. Journal of Intelligent & Fuzzy Systems, 25(3), 797-810.
http://dx.doi.org/10.3233/IFS-120686

21. Park, L. T., Hwang, H. S., & Moon, I. Y. (2014). Study of Wearable Smart Band for
a User Motion Recognition System. International Journal of Smart Home, 8(5), 33-
44. http://dx.doi.org/10.14257/ijsh.2014.8.5.04

22. Robertson, J., & Robertson, S. (1994). Complete Systems Analysis. 353 West 12th
Street New York: Dorset House Publishing Co., Inc.

23. Silva, È. S., & Rodrigues, M. A. F. (2014) Design and Evaluation of a Gesture
Controlled System for Interactive Manipulation of Medical Images and 3D Models.
Journal on Interactive Systems, 5(3), 53-65. Retrieved from
http://www.seer.ufrgs.br/jis/article/viewFile/50376/32555

24. Tran, K. T. M., & Oh, S. H. (2014). A Hand Gesture Recognition Library for a 3D
Viewer Supported by Kinects Depth Sensor. International Journal of Multimedia &
Ubiquitous Engineering, 9(4), 287-308. http://dx.doi.org/10.14257/ijmue.2014.9.4.31

25. Tyrer, A. (2015). Can the UK cyber-security industry lead the world?. Computer
Fraud and Security, 2015(2), 5-7. http://dx.doi.org/10.1016/S1361-3723(15)30006-3

52

26. Wang, X., Zhang, X., & Dai, G. (2007) Tracking of Deformable Human Hand in Real
Time as Continuous Input for Gesture-based Interaction. IUI’ 07, 235-242.
http://dx.doi.org/10.1145/1216295.1216338

27. Wu, J., Pan, G., Zhang, D., Qi, G., & Li, S. (2009) Gesture Recognition with a 3-D
Accelerometer. Ubiquitous Intelligence and Computing, 25-38.
http://dx.doi.org/10.1007/978-3-642-02830-4_4

28. Yang, H. D., Lee, J., Park, C., & Lee, K. (2014). The Adoption of Mobile Self-
Service Technologies: Effects of Availability in Alternative Media and Trust on the
Relative Importance of Perceived Usefulness and Ease of Use. International
Journal of Smart Home, 8(4), 165-178. http://dx.doi.org/10.14257/ijsh.2014.8.4.15

29. Zhang, X., Lv, S., Xu, M., & Mu, W. (2010). Applying evolutionary prototyping model
for eliciting system requirement of meat traceability at agribusiness level. Food
Control, 21(11), 1556-1562. http://dx.doi.org/10.1016/j.foodcont.2010.03.020

http://link.springer.com/book/10.1007/978-3-642-02830-4

53

Appendix A – PID

School of Computing final year
project

Max Hunt

PJE40

Project Initiation Document

The Application of Gesture Control and Quick
Response Techniques on the Smart Watch
Platform, using JavaScript

54

1. Basic details

Student name: Max Hunt

Draft project title:

The Application of Gesture Control and Quick Response

Techniques on the Smart Watch Platform, Using

JavaScript

Course: Bsc Computer Science

Client organisation: N/A

Client contact name: N/A

Project supervisor: Jacek Kopecky

2. Outline of the project environment and problem to be

solved

Wearable technology is becoming ever more present on the market, if sometimes

expensive, and is now available to be purchased in the public domain. However, with this

new technology, I see a huge drawback and potential for improvement. Ease of use.

People are forevermore trying to automate and improve the ease of their life, for instance,

voice activated GPS and escalators. This also proved by the emergence of this

technological sector. All these allow us to get to places or interact with services requiring

minimal effort and concentration.

Although wearable technology is improving in that aspect, all still use touch for interaction

which can be frustrating of slow in comparison to another form, gesture control. For

example, if you wish to say “Hello” to someone from a long distance in which they are

inaudible to you, a gesture would be used. This could be something as simple as a wave. I

would like to apply this natural and quick process of thinking to wearable technology.

The focus of my project is to improve the interaction between the user and their smart

watch, to the point where the gesture control becomes easier and quicker than using the

buttons or touching the screen.

I would like the end result of my project to influence future development on the smart

watch platform; specifically ease of use and, if the research is successful, gesture control.

55

3. Project aim and objectives

The overall aim of the project is to improve the ease of use on smart watch platforms,

using JavaScript as the developing language.

In order to achieve this I will be completing these objectives:

 Investigate Gesture Control with users to find unique and easy gestures to apply.

 Research and scrutinize different Gesture Recognition techniques that have
already been implemented and identify if any current development is adaptable or
transferable to JavaScript.

 Explore and apply Gesture Control to the Pebble using the 3D accelerometer.

 Consider the creation of a website to create a Distributed System across the
platform to store data and/or application features.

 Meet the Pebble‟s memory requirement by generating Efficient Code.

 Research and, if relevant, include basic Text Analysis one of the applications to
help with ease of use.

 Make sure all according and data collected it in accordance with the Data
Protection Act.

 Release the application to the market

4. Project deliverables

The deliverables I hope to create during this project are:

 A Library for Gesture Control

 A number of native applications for the Pebble.


Additionally, depending on the outcome of initial research, I will produce the system

artefacts:

 A website interfacing with the applications; used to store data and for additional
computing power if needed

 A Library for Text Analysis

Finally, documentation will be produced. A report will be created outlining, discussing and

evaluating the project. Documentation on the code/Library will also be made available.

5. Project constraints

With every project there are constraints and this project is no exception. Undoubtedly, I

have the generic constraints of time; the project has only 9 months, workload; I have other

units and coursework that I need to complete.

56

However, I have other constraints that are unique and somewhat uncommon in the now

very much evolved, industry of technology; the most pronounced being memory

availability, but also industry evolution and the Pebble SDK platform.

The Pebble, being a small gadget, has very limited space for memory storage. As a

consequence, it not only has a much smaller available space for volatile memory but also

non-volatile. The pebble can only have 8 apps stored on it at a time, each with a maximum

memory allowance. A couple of solutions have already been thought of, such as a native

app or storage in a database on a website.

Additionally, with the industry of technology and its constant evolution, the wearable device

sector is growing very quickly. This could potentially mean that the platform I have opted

for could be a legacy device by the time of this projects completion.

The final constraint, applicable to just this project, is that the Pebble SDK is only available

on MAC and Linux machines, in offline mode. This means that if I wish to develop offline, I

must have one of these systems.

As with all technology and the potential for data collection, the Data Protection Act must

not be ignored. If I do venture into the text analysis sector, I may come across constraints

applied by this act.

6. Project approach

I am going to approach my project with an open mind. By this I mean that I am clear by

what I want to do and achieve but am very open for the project to go into another direction

should a greater problem recognised.

I will achieve my project aim by applying gesture control and quick response techniques to

a number of applications. These will start small scale and become more intricate as I

develop my gesture control library. The current ideas are: A small, quick response system

with either a “Yes” or “No” response; music control system; gesture tracking which is then

mapped onto the screen.

I shall be using the Agile method to approach my project with a Sprint method in place to

achieve my goals and prototypes of applications. A sprint will be based on development

and allows me to create concrete milestones and easily track progress. These will be over

a 2 week period.

My skills as a developer are honed enough to progress in this project, but I have limited

knowledge with JavaScript. This will be addressed by the taking of the Graphics Vision

Unit, but I will need to be learning how to use this language to its full capability over the

first couple of months of my project.

I will admit one of my weaknesses is efficient coding. All though the end result will be the

same; my code may not be as good as it could be. This will also need to be worked on as

57

personal goal. I can correct this by reading into the subject, as well as trial and error during

development.

7. Facilities and resources

I do not have access to a Mac. I will therefore be using one at the university; this allows

me to develop in offline mode. The mobile lab has many Macs but also has Apple

development kits, should the need arise to use them. The mobile lab is sometimes in use

but there will be times when I can go in.

If this need does arrive to use the development kits, due to the Pebble being available on

multiple platforms, I will also be developing on the Android software. This brings the

necessity for a phone using this software. Fortunately, I have access to one of these.

Obviously, naming the Pebble as my primary platform, I will be using the Pebble smart

watch. I will use the “Cloud Pebble” service, which is linked to GitHub, for development.

8. Log of risks

Risk
Description

and Type

Risk Impact Risk
Probability

Low - Medium -
High

Mitigation /
control

First indicator

Time – Running
Out of time for
Hand-in

No completion
of artefact

Low Amend/ Monitor
Methodology
and milestones

Milestones
missed

Pebble Breaks Nothing to test
on

Medium Be careful with
it.

Non-
Responsive
testing

Loss Of Work Nothing to
Hand-in

Low Save in multiple
locations
regularly.
Dropbox.

No access to
work.

Illness Have to Defer
year

Medium Keep good
health

Ill Health

Evolution of
market

Pebble
becomes legacy

Medium Keep Updating
Software and
keep with
current trends in
Application
development

No new updates

Inexperience at
JavaScript
leads to
inefficient
coding

Applications
don‟t run
smoothly

High Constant testing
of code for
memory leaks

Memory Leaks

58

9. Starting point for research

I so far have some journal articles:

Affordances of Touch in Multi-Sensory Embodied Interface Design, Simone Gumtau

(2011)

Activity Detection Using Frequency Analysis and Off-the-shelf Devices, Sebastian Bersch

(2013)

Real-Time Human Ambulation, Activity, and Physiological Monitoring: Taxonomy of

Issues, Techniques, Applications, Challenges and Limitations, Ifeyinwa Achumba 2013

A Grounded Theory of Emergent Benefit in Pervasive Game Experiences, Neil Dansey

(2013)

I have also done some research into application and libraries on the pebble that involve

accelerometer use. There is an application already in use that could allow me to create a

chart, over all three axis, for a movement.

10. Breakdown of tasks

As stated I propose to work in an agile method. This will allow me to adapt my project as it

goes on and prototype my work constantly. However, In order to do this, I will be

completing a lot of documentation about project approach e.g. Specifications and

requirements. I will also be working on the literature review over a long period to allow for

many drafts. Here is list of tasks I wish to complete (Un ordered):

 Documentation
o Research
o PID
o Statement of Aims and Objectives
o Literature Review
o Methodology
o Specification and Requirements

59

o Analysis of Design
o Implementation
o Testing Discussion
o Evaluation of Requirements
o Discussion of Solutions
o Conclusion

 Development
o Small application for the Pebble
o Accelerometer use in the Pebble
o Design for Prototype 1
o Development 1
o Testing and Review
o Design for Prototype 2
o Development 2
o Testing and review
o Design for Prototype 3
o Development 3
o Testing and Review
o Polishing 3
o Final demo of 3

60

11. Project plan

This plan will be monitored and maintained. This is subject to change. The plan has so far been made to up to first demo.

61

12. Legal, ethical, professional, social issues

As mentioned in the constraints section the Data Protection Act could have an impact on

this project as well as the new cookie laws (UK Only).

If I do gather data of people gestures, is this a violation of the Data Protection Act. The

problem is that this is a rather grey area. Although not directly linked to them in any

personal way, it is still data on their movements that I am collecting. This will require more

research.

However, it is abundantly clear that if I have an element of text analysis, I will be reading

people incoming messages. This data is will not be stored by myself of the application. But

the user will have to be made aware that this is happening.

Ethical Checklist attached.

Signatures

 Signature: Date:

Student

Client

Project supervisor

62

Appendix B – Ethics Certificate

63

64

Appendix C – Test Plans

1. Non-Functional Requirement 14 Test Plan
False Positives are tested by completing gestures and movements that should not be

identified as the gesture that is being searched for. E.g. circular movements should not be

identified as a shakes. A range of movement will be tested to full fill this requirement.

Overall Result is “Pass” at 93.3%.

Test No. Testing Expected
Result

Actual Result Conclusion

1 Circular
movement

No Detection No Detection Pass

2 Circular
movement

No Detection No Detection Pass

3 Circular
movement

No Detection No Detection Pass

4 Circular
movement

No Detection No Detection Pass

5 Circular
movement

No Detection No Detection Pass

6 Y Directional
Movement

No Detection No Detection Pass

7 Y Directional
Movement

No Detection No Detection Pass

8 Y Directional
Movement

No Detection No Detection Pass

9 Y Directional
Movement

No Detection No Detection Pass

10 Y Directional
Movement

No Detection No Detection Pass

11 X Directional
Movement

No Detection No Detection Pass

12 X Directional
Movement

No Detection No Detection Pass

13 X Directional
Movement

No Detection No Detection Pass

14 X Directional
Movement

No Detection No Detection Pass

15 X Directional
Movement

No Detection No Detection Pass

16 Z Directional
Movement

No Detection No Detection Pass

17 Z Directional
Movement

No Detection No Detection Pass

18 Z Directional
Movement

No Detection No Detection Pass

19 Z Directional
Movement

No Detection No Detection Pass

65

20 Z Directional
Movement

No Detection No Detection Pass

21 Random
Movements
Light

No Detection No Detection Pass

22 Random
Movements
Light

No Detection No Detection Pass

23 Random
Movements
Light

No Detection No Detection Pass

24 Random
Movements
Light

No Detection No Detection Pass

25 Random
Movements
Light

No Detection No Detection Pass

26 Random
Movements
Hard

No Detection Detection Fail

27 Random
Movements
Hard

No Detection No Detection Pass

28 Random
Movements
Hard

No Detection No Detection Pass

29 Random
Movements
Hard

No Detection Detection Fail

30 Random
Movements
Hard

No Detection No Detection Pass

2. Non-Functional Requirement 17 Test Plan
This test was completed with a timer. It was timed from the end of a completed gesture to

the output of a detection “true variable”. Shake are being used her as they are the easiest

gesture to complete. Over all result was a “Pass” at an average of 0.733 seconds.

Test No. Testing Expected Result Actual Result Conclusion

1 Shake Detection < 2 seconds 0.28 seconds Pass

2 Shake Detection < 2 seconds 0.56 seconds Pass

3 Shake Detection < 2 seconds 1.32 seconds Pass

4 Shake Detection < 2 seconds 1.03 seconds Pass

5 Shake Detection < 2 seconds 0.78 seconds Pass

6 Shake Detection < 2 seconds 0.81 seconds Pass

7 Shake Detection < 2 seconds 0.41 seconds Pass

8 Shake Detection < 2 seconds 1.05 seconds Pass

9 Shake Detection < 2 seconds 0.96 seconds Pass

10 Shake Detection < 2 seconds 0.13 seconds Pass

66

Appendix D – Documentation for Gebble.js

Gebble.js is a library which helps developers implement gesture control into JavaScript

applications, using the Pebble smart watch and pebble.js.

1. Setting up Gebble.js

First of all you must add the Gebble.js library to your files in the application. Gebble.js can

be found here, https://github.com/MaxHunt/Gebble. The “read me” is not required for

Gebble.js to work.

Secondly, you must require Gebble.js in the files you wish to use it.

//include Gebble Library

var Gebble = require('Gebble');

After this, you can use the Gebble.js functions. However, you must initiate the

accelerometer in your application. The details for this can be seen in pebble‟s

documentation: http://developer.getpebble.com/docs/pebblejs/ . The optimum setting for

gesture detection is 25 samples at 10Hz. This is also the setting the default gestures have

been defined and tested with.

2. Using the functions

To start use the init() function, this allows you to set options for the Gebble.js. Here is an

example of how this works. They are passed as an object to the init function.

//gestures

var shake =

[[{x:3000,y:3000,z:3000,name:"shake"},{x:100,y:100,z:100}],[{x:3000,y:3000,z:300

0},{x:100,y:100,z:100}],[{x:3000,y:3000,z:3000},{x:100,y:100,z:100

var shakeX =[[{x:4000,y:4000,z:4000,name:"shakeX"},{x:1100,y:0,z:0}]];

var shakeY =[[{x:4000,y:4000,z:4000,name:"shakeY"},{x:0,y:1100,z:0}]];

var shakeZ =[[{x:4000,y:4000,z:4000,name:"shakeZ"},{x:0,y:0,z:1100}]];

var gestures = [shake,shakeX,shakeY,shakeZ];

//start APP

var opt = {debug:true, delay:3000, gestures:gestures};

Gebble.init(opt);

“Debug” allows the output of messages in the console telling you when detection has been

made, among other useful information. Can be true or false

https://github.com/MaxHunt/Gebble
http://developer.getpebble.com/docs/pebblejs/

67

“Delay” is the amount of time another gesture can be detected from a previous positive

detection, the cool down time if you will. The 3000 value above represents 3 seconds. An

integer.

“Gestures” is the array of gestures you wish to detect. In the example, there are 4 different

gestures. The order in the array denotes the priority of the gesture. If first, this gesture

compared first and so on.

The gesture format is that of an array. Within the array are number of frames, also each an

array. These frames contain 2 objects, each with 3 variables, excluding the first object in

the array, which contains a name field.

The 2 objects contain upper and lower tolerances for comparison to the measurements

coming into the algorithm. The maximum is 4000 and minimum 0 as they differences are

calculated absolutely. The tolerance is compared to the difference of a frame on the

measurement side. For example if x1-x2 > g1 this is evaluated to true.

All these options have default values. “Gesture” defaults to a shake, X Movement, Y

Movement and Z movement, “Delay” to 3000 and Debug to “true” if no input is found.

In order to use Gebble.detect(), you must supply it with the event given to you by the

accelerometer. An example below.

var detection = Gebble.detect(e);

The response will be either true or false, depending on whether a gesture is detected in

that event. You will also receive an integer relating to the position of the gesture in the

array supplied of the default array, as explained above. If the detection was false, this

number will be -1.

3. Example Project

An example project using Gebble.js is here https://github.com/MaxHunt/StarWarsGen.

This is also the project the above snippets of code were taken from. This project was

adapted from https://github.com/dcgauld/starwars.

Any other questions, please feel free to tweet me @MaxHnt, or contact me on Github.

https://github.com/MaxHunt/StarWarsGen
https://github.com/dcgauld/starwars

68

Appendix E – Other Applications

This appendix describes the design and implementation of the first 2 apps I created for this

project.

1. The First Application
After the decisions made at the start of chapter 7, the first application was started. The

design decisions were mainly avoided here as, at the start of the project, I was highly

inexperienced with JavaScript and did not know much about Pebble‟s API either. This was

an exploratory application.

However, the overall aim of this application was to produce something that could output a

readout of the accelerometer, on a button click. This would pave the way for the next

application, a real-time readout. 7.1.5 explains this application.

This Snapshot application, “AccelSnapShot” as I

called in in the final Development stage, was a

challenge but surprisingly from the Graphical User

Interface side. It was fairly simple to get readout of

the data into a log to the console, but placing it on

anything other than the start-up screen of the

application was a challenge.

During the limited designing stage of this app, a

decision had been made to have the start-up screen

display instructions on how the app worked and then

a second screen would appear (figure 32), after a

button press. This screen would display the snapshot

information from the accelerometer at the time of the

button press. When trying to implement this I found

that Pebble uses a rather, in my opinion and

admittedly limited experience, unconventional

method of GUI handling.

The displayed windows can stack on top of each

other, after changing to a screen further into the application. But, if a user uses the back

button, to come out of a lower level of the application, this does not then close the screen;

this only “hides” the window. This leads to multiple instances of said window being left

open, unless the button is overwritten with a close function that implements the same

command twice, the command that hides window. This is the method that is listed in the

Pebble documentation.

Whilst this was easily fixed by the aforementioned technique, later on a similar bug with

the Noise Monitor Application arose, which wasn‟t so easy to fix. When unhandled, this

problem causes a memory leak which is never a welcome problem, but especially with the

Pebbles limited memory availability.

Figure 32 - Result Screen of the
"AccelSnapShot" application

69

Despite this problem, I have met many of my requirements with this application, the

number of these completed requirements are as follows: (Functional) 11,(Non-Functional)

1,4,5,6,7,8,9,12,16,19 and 21. The seventh Non-functional requirement asks to adhere to

memory usage percentage of 7/8 or 87.5%. This apps usage was calculated to 20.5%,

well below the required level. Number 12 requires an icon to pass, this can be seen in

Figure 11, next to the applications name.

All the additional un-met requirements of this application are not applicable to it and

therefore are of no concern, except for number 13. This requires the application to be

released via the Pebble store. Although this could have been done, a release version

published on GitHub was seems satisfactory for the initial application which was meant to

test myself as a developer rather than be released for public use.

2. The Next Step – A Real Time

Monitor
After the learning curve from the “AccelSnapShot”, the

next stage obvious stage in development, towards my

first prototype, was the ability to monitor and read the

accelerometer data in a real time capacity. A separate

application was conceived to try various techniques

before deciding on the most efficient way to handle the

event driven system of the pebble.js API.

The first design executed was that similar to the

previous, but using a loop to continuously update the

screen with the firing of a simulated event. Whilst

working in design and theory, upon the first tests, the

length the application could run was under a minute

before crashing. I found that this was due to the a-

synchronous nature of JavaScript. A new loop was

being created on each event, without the previous one

ever timing out, eventually leading to the memory on

the pebble being used up, crashing the Pebble App

and watch crashing.

This caused the change in direction to the application format, which continued on

throughout my project. After initially looking through the Pebble documentation for a fix

with the GUI, an event was found that fired every time the accelerometer handler filled the

number of samples it was allocated (default 5). The accelerometer objects could also be

subscribed too and unsubscribe from. This gave control that was needed to produce real-

time input, which could be stopped at any point and display it as well, without the need for

a loop. Every time the event fires it takes the data into a function and displays this once.

This function is then discarded and the application waits for the next event.

Figure 33 - Screen Shot of Real Time Application

70

At the same level as the accelerometer event, it is also checking for a back button press.

Whilst, the back function is already automatic, the application needed to unsubscribe from

the accelerometer object to stop the events firing whilst not on the output screen, saving

precious memory. Whilst not so important in this application, it was good practice as well

as future proofing the application.

Decided during this application was the rate of sampling and the amount of samples. At a

rate of 10 Hz, to 25 samples, the application could keep up with incoming data. If this was

decreased a visible gap in the measurement could be seen. If increased the events would

start to pile up as they could not be processed quick enough. These variables are in line

with the predicted requirement.

This application also met a number of the requirements that where outlined. Functional

requirements completed: 7. Non-Functional Requirements completed: 1, 4, 5, 6, 7, 8, 9,

12, 13, 16, 19 and 21. As the previous application, the seventh Non-functional requirement

asks to adhere to memory usage percentage of 7/8 or 87.5%. This apps usage was

calculated to 21%, below the required level. Number 12 requires an icon to pass this can

be seen in Figure 33, next to the applications name.

Furthermore, all the additional un-met requirements of this application are not applicable to

it and therefore are of no concern. However, as with the application before, it was decided

not to release this via the pebble store, as it was more an exploratory application for me

rather than a consumer application. However, it has been professionally finished and has

been released on my twitter and website with a link to the release version on my GitHub.

